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"Abstract

This Technical .Memorandum presents a derivation of the equations of
motion for large and small disturbance perturbations from a reference
state of motion. The small perturbation equations of motion are then
generalized to include the effects of atmospheric tuirbulence and gusts
on the controls-free elastic aircraft. The resulting equations are

S -. termed the EXACT formulation. These EXACT equations may be used to
0* 'evaluate the stability and performance of integrated flight control sys-

tems of the Control Configured Vehicle (CCV) type. The equations are
"• ., unique in that they describe a highly damped system using motion coordi-

nates referenced to a body fixed, "Mean", non-inertial axis.

The EXACT formulation of the equations of motion are difficult to
"solve numerically. This difficulzy can be overcome in some flight control

let analyses by using a simplified formulation such as:

: QUASI STATIC
"*MODAL SUBSTITUTION
*RESIDUAL STIFFNESS
*RESIDUAL FLEXIBILITY
.MODAL TRUNCATION

...... -The range of the applicability of each of the specialized forn.aticncxu.
is limited by the assumptions required to reduce the EXACT formulation to
that specialized formulation. A discussion of, the assumptioas is pre-
sented to guide the application of each formulation to military and com-
mercial aircraft.

It is concluded that the passive acceptance of the MOD It TRUNCATION

and QUASI STATIC formulations by flight control analysts should be justi-
"fied numerically at the critical flight control design points. In addi-
tion, it is conc!,a, ed that the full implementation of the integrated
flight control benefits, promised by the CCV concept, has a current limi-
tation due to the possible inappropriateness of the 'Invacuum normal modes"
as elastic coordinates in a highly damped system. This limitation may be
removed by developing a computational method for ý.he accurate solution
of the precise ZXACT formulation.
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Foreword

This Technical Memorandum was prepared under work unit 82191304. The
work unit, entitled, "Analysis Methods for Control Configured Military

V Vehicles", is divided into five parts:

1. A literature search.

2. A formulation of the equations of motion for the controls-free
aircraft.

3. A simplification of the equations in item (2) to permit a more
rapid, but less accurate solution for flight control application.

4. Solutions of the equations in items (2) and (3) using USAF air-
craft as test cases to develop criteria for the selection of appropriate
-formulation of the equations of motion.

.-5., A final summary -report.

The work reported in this TM summarizes the results for items (1), (2),
and (3) above.

The responsibility for the Accuracy and conclusions presented in
this Technical Memorandum rests with the organization that prepared it.
This Technical Memorandum has been reviewed and is approved.

C. B. WESTBROOK, CHIEFi' -,CONTROL CRITERIA BRANCH

FLIGHT CONTROL DIVISION

iii



FT7-7 -- 2 7 -7 E7;i

Table of Contents

Section Page

LIST OF MATRIX SYMBOLS...........................vi

LIST OF FIGURES ................................... ix

LIST OF TABLES .................... .... . .......... x

1.0 INTRODUCTION ....... ... .......... * .*.. 1

1.1 History-and Terminology .................... 4
1.2 Problem Definition and Solution .............. 6

2.0 DERIVATION OF EQUATIONS OF MOTION

OF AN ELASTIC AIRCRAFT ............................ 10

2.1 Selection of Motion Coordinates .............. 10

2.1.1 Displacements relative to
inertial coordinates .................. 12

2.1.2 Displacements relative to
non-inertial coordinates .............. 12

2.1.3 Contrast of inertial and
non-inertial coordinates .............. 12

2.2 Controls-Fixed, Elastic Aircraft
Equations of Motion .......................... 14

2.2.1 Large disturbance equations
of motion ............................. 21

2.2.2 Small disturbance equations
of motion ................. ............ 26

2.3 Controls-Free, Elastic Aircraft
Equations of Motion - EXACT
Formulation ......... ................. ...... 34

2.3.1 Structural damping .................... 34

2.3.2 Atmospheric gusts and turbulence ...... 35
2.3.3 Active aerodynamic control

surfaces ...... ....... ............... . 36

iv



411 ~'17---~ -1 y,

Section Page

3.0 APPROXIMATE FORMULATIONS ......................... 38 -

3.1 QUASI STATIC Formulation................. .... :39
3.2 MODAL SUBS'-ITUTION Formulation ............ 43
3.3 REESIDUAJ. STIFF"NESS Formulation ............... 45-
3.4 RESIDUAL '.LEXIBILITY Formulation . ...... 47
3.5 MODAL TRUNCATION Formulation ............... 5

*4.0 RESULTS.................. .......... ..... 53*** ****C*

5.0 CONCLUSIONS ......................... * * 56

6.0 LIST OF REFERENCES............................... 57

73



'V -V -"'V • -, '

LIST OF MATRIX SYMBOLS

*Matrix
"-Symbol Units Definition

"A lbs/he Aerodynamic forces on each mass due to
rigid body velocity, ,

A.z lbs/f Aerodynamic forces on each mass due to
rigid body acceleration, " -

lbs/? Aerodynamic forces on each mass due to
elastic deformation position.

A4  lbs/ Aerodynamic forces on each mass due to
"elastic deformation rate.

As- lbs/i Aerodynamic forces on each mass due to
elastic deformation acceleration.

-&z lbs/S; Aerodynamic forces on each mass due to
position of ith control surface, l

A7" lbs/t. Aerodynamic forces on each mass due to
"velocity of ith control surface, .

lbs/s, Aerodynamic forces on each mass due to
acceleration of ith control surface,

. .. . •Ap/ib Flexibility matrix of structure canti-
levered at the c.g. of the aircraft.

Cy 4/lb Flexibility matrix of the structure for
"a "free-free" aircraft.

ft Displacement of mass relative to its
initial position as measured relative
to the body-fixed mean axis.

lbs/1, Structural damping.

lbs Aerodynamic forces on each mass due to
rigid body and elastic motion.

lbs Aerodynamic forces on each mass due to
the controls

vi



MI,

Matrix 
i

Symbol Units Definition

4• lbs Aerodynamic forces on each mass due to
gusts.

lbs Aerodynamic forces on each mass due to
turbulence.

4.4
L. slugs/ft Inertia of reference shape of the air- '

craft with respect to mean axis.

1bs/sr Stiffness matrix of aircraft represented
as "free-free" structure.

lbs/• Generalized stiffness matrix.

lbs/tL, Generalized stiffness matrix associated

with retained modes r in number.

A7. lbs/uL Generalized stiffness matrix associated
with deleted modes.

.M Combined rigid body inertia, M

M slugs Total mass of aircraft.

f t/sec Cross product terms in rigid body
equation due to initial conditions.

" ft/sec Upper right partition of

M2. ft/sec2  Gravity terms in force equations due to
initial conditions.

ft/sec2  Upper right partition of M.

. M2 slugs Mass distribution.

In slugs Generalized mass.

yn, slugs Generalized mass associated with retained
modes r in number.

V, slugs Generalized mass associated with deleted
*modes.

Pi; ft Equal to

vii



Matrix
Symbol Unit Definition

0?none Body axis orientation.

Rnone Residual flexibility static aeroelastic
correction factor.

I.ft Generalized coordinate defined as in-
vacuum normalized mode coordinate.
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vacuum normalized mode coordinate for
r retained modes.
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Rigid body mode shape, T. a' 3r
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1.0 INTRODUCTION

Recently the flight control staffs of many aerospace research anc I
development organizations have proposed the application of modern flight
control concepts early in the design cycle of elastic aircraft. The
XB-70C() has a gust load alleviation system. The SST(2) had a "hardened"'
stability augmentation system to compensate the longitudinal static
stability at an unstable flight condition. The B-I( 3 ) is being designed
with a "ride quality" augmentation system to ensure that the pilot can
effectively monitor and control the B-I when flying through atmospheric
turbulence. Looking to the future, the USAF has proposed( 4 ) the Control
Configured Vehicle (CCV) concept to achieve full benefit of integrate'
flight control system technology.- This concept requires, among other-u:
that (1) the reliability of a !ontrol system be improved to a level equal
to or higher than the reliability of the primary structure and (2; the
usually adverse effects of the non-linearities in the control system design
data be overcome using high authority actuators or other contre) system
hardware and software. Then the problem of high maneuver loads, low
flutter speeds, static instability, etc. on a flight vehicle, that is
designed to be aerodynamically optimum, can be minimized or removed through
the use of a sophisticated CCV-type control system. Sone examples of the
CCV-type control systems may be found in references 5, 6, and 7.

The achievements of benefits due to modern flight control concepts
depends upon an accurate mathematicol model of the aircraft. The matbema-
tical model becomes even more important for CCV concepts. This is because
the design of the CCV integrated control systems requires an accurate pre-
diction of the rigid body and structural dynamics of the aircraft being
stabilized along w~th an estimate of the possible errors that may be
included in the dynamics. In general, errors in the dynamics arise from two
sources:

1. The inappropriate formulation of the equations of motion.

2. The non-precise aerodynamic, structural, and inertial design data T
set.

It has been traditional to attribute most analytical errors in the
flight control design of comtemporary elastic aircraft to the design data
set and many discussions of these errors are contained in the literature.
Thus, very few discussions of the reasons for the errors in equation formu- .4,
lation are to be found, even though the inapprcpriate formulation can negate

the most accurate design data supplied by the engineering disciplines.

There are many formulations of the equations of motion of an elastic
aircraft currently used in the aerospace industry. To date, most of the
formulations have resulted from a priori assumptions or have been torced .
upon the flight control design due to expediencv. These types of inappro-
priate formulations result in moderate to large-sized risk factors
in the flight control design. The risk factors are manifested as the



large gain and phase margins used as the flight control sysLem design
criteria to permit large adjustments in the control system gains during
flight tests of the prototype. More complex integrated control systems
for a highly elastic, high performance aircraft, such as one using CCV
concepts, will not have the luxury of high gain and phase margins be-
cause of their complexity and their use of each aerodynamic control sur-
face for many purposes.

The effect of an inappropriate equation formulation on the analysis
of the integrated flight control system can be visualized using an ex-
ample. Figure 1.1, adapted from reference 8, portrays a simple feedback
control system: the schematic is presented in Figure l.la and the sta-
bility matrix representation of the schematic in Figure l.lb. In both
cases, the equations of motion for the elastic airplane are shaded. As
shown in the schematic, the equations of motion hold a dominant position
in the design of integrated control systems. Their transfer function
relates input quantities such as atmospheric turbulence and gusts and
distributed control forces and moments to the output motion variables
that determine the motion of the elastic aircraft through the atmosphere.
The determination of the numerical value of all the elements in the
schematic may be achieved by the evaluation of the characteristic ecuation
of the determinant of the stability matrix in Figure l.lb. As indicated,
the equations of motion in the upper lefthand corner of the matrix in-
fluence the numerical value of all the control system elements, e.g., the
filters, forward loop compensation, feedback loop compensation, sensors,
sensor position, etc.

It is the intent of this paper to outline the source of those er-
rors in the integrated control system due to the formulation of the equa-
tions of motion. This objective is accomplished by deriving a unique
and precise set of linear, ordinary differential equations of motion
for a controlled aircraft flying in a gusting or turbulent atmosphere
(EXACT formulation). These precise equations are then simplified to
five other formulations using identified assumptions. All formulations
reported in the literature and used within the aerospace industry can be
related to the EXACT formulation or to the five simplified formulations.
A contrast of the mathematical model of each formulation to the actual
physics of the elastic airplane determines:

* Which formulation is the most appropriate to each elastic air-
plane analysis.

* What qualitative errors are included in the integrated control
system design, if an inappropriate formulation is selected due to
cost or time considerations.

In addition, an examination of each of the equation sets indicates:
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s What problems are involved in implementing the formulations on
limited size flight simulators.

. What formulation is particularly appropriate to the inclusion of
nonlinear aerodynamics.

1.1 History and Terminolegy

The analysis of the dynamics of elastic aircraft is traceable to the
flutter and control surface divergence aeroelastic problems encountered
on the early military aircraft. As elastic aircraft became more complex,
the analysis of these and other aeroelastic problems specialized to those
engineering disciplines characterized as "flutter", "static structural
loads", "dynamic structural loads", "configuration aerodynamic develop-
!mcnt', and "aeroelastic stability and control". With the advent of more
Amdern aircraft such as the B-47, B-52, XB-70, YF-12, C5A, 747, SST and
B-1, the interactions of these specialized disciplines of aeroelastic
analysis became particularly pronounced during the design of the flight
control system. The different terminology and equation formulations of
each discipline result in engineering confusion and mis-:matched structural,
aerodynamic, and stability and control data.

It is the responsibility of the flight control engineer to integrate
the data created by the aeroelastic disciplines to create a safe and
useful aircraft by means of augmentation systems. These aircraft augmen-
tation systems are used to improve:

0 Handling qualities.

* Ride quality.

* Static stability.

* OFatigue life.

* Flutter margin.

*Maneuver loadability.I Atmospheric gust loadability.

The integration of the-diverse aeroelastic data is not usually performed
by any of the other disciplines because of their important responsibilities
to the detailed structural, aezodynamic, or stability and control design
of the aircraft. An additional difficulty encountered by the other dis-
ciplines is that each of them has only a partial understanding of the term-
inology of each of the other disciplines, thus, the intercommunication
required fo; integrated control system development is difficult( 9 ).

4



Some preliminary formulations of the equations of motion of an
elastic aircraft have been completed. Etkin(lO) developed the equations

S.of motion of rigid airplanes and eutlined a method to be used to analyze
elastic aircraft. More specific descriptions of Etkin's method and othermethods are presented in references 11, 12, 13, and 14 along with illus-

trative applications to contemporary aircraft. There are some publications
discussing the equations that describe the motions of complex elastic air-
craft configurations. Unfortunately, these publications specialize the

S* equations to an undamped, uncontrolled elastic aircraft(15 or to a par-
ticular formulation(1 6 , 17, 18).

Those equation formulations commonly found in the literature may be
categorized as:

QUASI STATIC - The motions of the structure are assumed to be in phase
with the rigid body motions: elastic motion acceleration is
instantaneous. The method is used primarily for handling qual-
ity and reduced static stability control system design for elas-
tic aircraft with wide frequency separation between the rigid
body and elastic motions.

EXACT - The motion of the structure is determined by the eigenvalue
(root) and eigenvector (mode shape) solutions of the equations

of mot:an for the elastic aircraft. The mode shape coordinates
-ontain complex numbers. The Accuracy of the solution is limited
by the existing computerized routines that calculate the complex
number eigenvalues and eigenvectors.

MODAL SUBSTITUTION - The motions of the structure are assumed to be
related to the orthogonal, invacuum eigenvectors (mode shapes).
All eigern'ecors contain only real numbers.

RESIDUAL STIFFNESS - Thu mode shapes representing the elastic motion
in the MODAL SUBSTITUTION formulation are separated into "re-
tained" and "deleted" modes. The deleted modes are represented
in the dynamic stability analysis as quasi static aeroelastic
corrections, using a correction factor related to the deleted
modes and the stiffness of the "free-free" structure.

RESIDUAL FLEXIBILITY - Similar to the RESIDUAL STIFFNESS formulation,
except the quasi static aeroelastic correction factor is related
to the retained modes and the flexibility of the free-free struc-
ture.

MODAL TRUNCATION - The deleted modes of the RESIDUAL FLEXIBILITY formu-
lation are not represented by any correction factor. This is
the most common dynauic aeroelastic formulation reported in the
literature.

5
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A unique qualitative/semiquantitative study of the QUASI STATIC

RESIDUAL FLEXIBILITY, and MODAL TRUNCATION formulations was conducted hy
r MacNeai, Schwendler, and Pearce for the USAF and reported in references

16, 18, and 19. These formulations were compared to the RIGID AIRPLANE
and EXACT formulations using an elastic missile, a low aspect ratio air-
craft, and a B-47 aircraft as study configurations. The aerodynamic and
structural theory applied in this analysis was extremely "crude", but
since the aerodynamic model was held constant for each configuration, its
errors are hopefully minimized in the comparisons. Typical results of
the study(1 6 ) for the elastic missile anu the B-.A7 aircraft are presented
in Figure 1.2, a Bode plot of the log amplitude of 6/5c versus frequency.
The following conclusions were noted in the reference 16:

oAt low frequencies (less than 0.50 cps in the Figure 1.2) the
QUASI STATIC, RESIDUAL FLEXIBILITY, and MODAL TRUNCATION results
are nearly coincident.

v At large frequencies (greater than 0.50 cps in the Figure 1.2)
the QUASI STATIC formulation is highly inaccurate.

*Neither the RESIDUAL FLEXIBILITY nor the MODAL TRUNCATION formu-
lations accurately approximate the EXACT formulation at all fre-
quencies (above 0.50 cpc in the Figure 1.2). However, the
RESIDUAL FLEXIBILITY formulation is the more accurate approximation.

The work presented in the reference 16 culminated the analytical efforts of
the USAF to represent the motion of elastic aircraft. Most USAF analytical
work in this field was discontinued in 1962 due to the absence of a digital
computer system large enough to solve the complex equations developed using
the structural and aerodynamic mathematical models that describe the
physics of the elastic aircraft. Instead, the USAF concentrated on experi-
mental programs such as the XB-70 GASDSAS and B-52 LAMS to demonstrate
related concepts.

In 1965 - 1967 the analytical work of MacNeal, et. al. was studied by
NASA and the Boeing Company and reported in reference 12. Here, it was
recommended that the RESIDUAL FLEXIBILITY formulation be implemented using
structural data front the structural finite element rogram such as NASTRAI,
and using the Woodward aerodynamic finite element(20). Also, the formu-
lations of reference 16 were reworked to form a amenable to the large
digital computer system - the CDC 6600 or IBM 360. The resulting program
has been called FLEXSTAB( 2 1 ). User experience with the QUASI STATIC and
RESIDUAL FLEXIBILITY formulations in FLEXSTAB has not yet been reported.

1.2 Problem Definition and Solution

The aerospace industry uses many of the formulations described in

6
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Section 1.1 to design and develop its military and commercial aircraft.
Thus, it is common for the USAF and the AFFDL to encounter the many formu-
lations (with individual company variations) during the proposal evalua-
tion and the contract monitoring phases of military aircraft development.
As examples:

The XB-70: QUASI STATIC and MODAL TRUNCATION.

The B-52-LAMS and B-52-CCV: MODAL TRUNCATION.

The F-4 CCV, Terrain Follower, and Survivable Flight Controls:
QUASI STATIC and MODAL TRUNCATION.

The YF-12 RIDE QUALITY: QUASI STATIC and MODAL TRUNCATION.

The F-Ill: QUASI STATIC and MODAL TRUNCATION.

The C-5A: QUASI STATIC and MODAL TRUNCATION.

The B-l: QUASI STATIC and MODAL TRUNCATION.

The F-15: QUASI STATIC and MODAL TRUNCATION.

The proposed SST designs: QUASI STATIC, RESIDUAL STIFFNESS,
and MODAL TRUNCATION.

There has been no previous attempt to categorize the formulations of the
equations of motion used in flight concrol system designs and establish
criteria for their use. As a consequence, the limitations of each formu-
lation as dictated by the assumptions required to derive the equations
are not recognized.

It is the objective of this Technical Memo to classify and contrast
these formulations relative to a unique and precise formulation of the
equations developed herein. This objective is accomplished in Sections
2.0 through 5.0. In Section 2.1 and 2.2 the nonlinear and linear equations
are developed to describe the motion of a controls-fixed elastic aircraft
relative to a non-inertial, body-fixed coordinate system. The linear equa-
tions are modified in Section 2.3 to include the effect of the free aero-
dynamic control surfaces and the effects of atmospheric gusts and turbulence
on the elastic aircraft; the resulting equations are termed the EXACT
formulation. In Section 3.0, the EXACT formulation is modified using
listed assumptions to simplify the mathematical model of the elastic air-
craft. These simplifications result in the formulations termed QUASI
STATIC, MODAL SUBSTITUTION, RESIDUAL STIFFNESS, RESIDUAL FLEXIBILITY, and
MODAL TRUNCATION. The results of the study are :)resented in Section 4.0;
the conclusions and recommendations of the study are summarized in Section
5.0. A List of References is contained in Section 6.0.

9



It is not the intent of this paper to discuss the many methods avail-
Sable within the government and industry for the calculation of aerodynamic

and structural influence coefficients. Thus, it is assumed throughout
this paper that methods exist to calculate:

0 Distributed aerodynamic forces on the surface of the aircraft.

0 Mass distribution for the aircraft.

0 Stiffness and flexibility matrices for the free-free and canti-
levered structure.

* Other data as required for the flight control analyses.

Also the effect of thrust on the initial shape is assumed negligible.
The forces due to thrust perturbations are included implicitly in the
aerodynamic force terms.

2.0 DERIVATION OF THE EQUATIONS OF MOTION OF AN ELASTIC AIRCRAFT

Before the flight control engineer can begin development of the
integrated flight control system of an elastic airplane, there must be
an accurate description of the aircraft being controlled. This descrip-
tion is termed the "equations of motion" and the description contains
implicit and explicit references to the struc~ural, aerodynamic, and geo-
metric properties of the aircraft. All the elastic aircraft equation of
motion formulations have these three groups of data in common; however,
the assembly of information depends upon the description of the dynamics
of the aeroelastic problem.

2.1 Selection of Motion Coordinates

"There are many descriptions of the dynamics of elastic aircraft
discussed in the literature. These descriptions can be grouped into two
categories depending upon the coordinates used to describe the motions
of the elastic aircraft. The two categories of displacement coordinates
are:

*Displacement coordinates relative to an inertial axis, i.e., an

earth fixed axis or any Galilean related axis.

#Displacement coordinates relative to a non-inertial axis, i.e., an
axis "fixed" to the accelerating elastic aircraft.

These two axis systems are shown in Figure 2.1.

10
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2.1.1 Displacement relative to inertial coordinates

In the first analysis grouping, the displacement of the surface of

the elastic aircraft is measured by a vector expressed relative to an
inertial base vector system. Typical examples of this approach are found
in references Rland 17. A flight control engineer using this analysis
approach to the dynamics requires that the structural, aerodynamic, and
geometric vector parameters of the airplane be expressed in the inertial
axis base vectors. It is usual in most of the literature to develop the
elastic body motions as a trajectory of the body and the surface of the
body relative to an inertial axis translating in a straight line at a
uniform velocity relative to the flat earth. The uniform velocity and
direction of motion is that of the elastic body prior to the onset of the
disturbance producing the elastic motion. This analysis nethod is typicaLLy
used by those specialities concerned with "flutter" and "dynamic struc-
tural loads".

2.1.2 Displacement relative to non-inertial coordinates

In the second analysis grouping the displacement of the surface of
the elastic aircraft is measured by a vector expressed relative to a
non-inertial axis base vector system. This axis system experiences both
linear and angular accelerations relative to the inertial axis discussed
previously. Typical examples of this approach are found in references
12 and 15. The flight control engineer utilizing this analysis approach
requires that the structural, aerodynamic, and geometric vector properties

of the aircraft be expressed in the body-fixed base vectors. This anal-
ysis approach is typically used by the specialities concerned with "aero-
dynamic configuration development" and "aeroelastic stability and control".

2.1.3 Contrast of inertial and non-inertial coordinates

The flight control engineer must choose the better of these two
approaches for each elastic aircraft flight control integration problem.
The inertial coordinate analysis is a classical mathematical approach and
is familiar to most engineers who solve structural dynamics problems. On
the other hand, the non-inertial coordinate analysis possesses consider-
able flight control engineering practicality:

1. Augmentation system criteria: The criteria presently used to
design the handling quality and reduced static stability augmentation sys-
tems are expressed in terms of the rigid body motions and aerodynamic
stability and control derivatives measured relative to the non-inertial
axis. Since criteria for the integrated flight control augmentation sys-
tem utilizing CCV concepts are not yet specified, either of the two anal-
ysis techniques would work. However, the non-inertial analysis technique
has the prerogative.

12



2. Analysis of nonlinear aerodynamic effects: The integrated
flight control system design points ugually lie at the extremes of the
flight placards where viscous aerodynamic effects induce pitch-up, buffet,
etc. These effects are currently measured in the non-inertial, body-fixed
axis coordinates. The important nonlinear aerodynamic and control system
parameters are most efficiently programmed in cerms of the non-inertial
coordinates, thus minimizing the required computer size, computational
frame time, and required axis transformations.

3. Flight simulator analysis: Pilot work load and misorientation
are very important considerations for the design of an integrated flight
control system. These two problems are usually evaluated in fixed base
and moving base flight simulators. Since the pilot considers himself
a "mass" attached to the airframe, he evaluates his motions relative to
some body-fixed, non-inertial axis. Usvally the information presented
to him in the cockpit, i.e., angle of attack, sideslip angle, relative
velocity, et., are directly related to the motion of the non-inertial
axis.

4. Large disturbance maneuvers: Large disturbance military maneuvers
required for defensive and offensive weapons delivery, are very often de-
sign points for an integrated control system. These large disturbance
motions are easily described in terms of the non-inertial coordinates and
are difficult to describe in terms of inertial coordinates.

Due to the above practical considerations, the non-inertial coordinate
analysis approach is adopted in this Technical Memo. C viously, both
analysis methods must give the same results, but the non-inertial analy-
sis is the analysis method most easily applied to the flight control inte-
gration problem.

-TI
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7 2.2 Control,-Fixed, Elastic Aircraft Equations of Motion

This section presents the equations that describe the motion of

an elastic aircraft subject to aerodynamic forces that are independent

of control surface position and atmospheric disturbances. The equations
are derived for the case of the aircraft idealized as N "lumped masses"
each having 3 translational degrees of freedom relative to a "body axis
system". The 3N rotational degrees of freedom may easily be included in
this formulation, but are omitte2d for par'oses of clarity. The body axis
system is defined as an axis system "attached" to tle elastic aircraft
by a means to be specified later in this development. Since the axis is
attached, they are characterized as "non-inertial", i.e., the axis experi-
ences 3 translational and 3 rotational accelerations whose magnitude are
related to:

0 The elastic motions of the N masses relative to the body axis.

* The aerodynamic forces on the system.

*The choice of the body axis.

eThe location and orientation of the body axis at t =0 (the initial
condition).

eThe gravicational forces acting on the aircraft.

*The mass distribution of the elastic aircraft.

The basis of this derivation is Lagrange's equation rather than the
Newtonian equations applied by references 12 and 15. The reason for this

approach is its simplicity of application-- a minimum of notation and of
analysis steps are required. The final results of the derivation can be
checked against reference 12.

The Lagrangian technique to be followed is from reference 22 and
that notation is used. Recall that the Lagrangian, L, must be written
relative to an inertial axis to be used in Lagranfe's equations:

(2.2)

where L• is thQ Lagrangian for some ith mass particle.
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Sis an appropriate coordinate vector.

W;? is the rate of change of Lj due toq.

S(A.,) is the time rate of change of (-) relative to an

observer in inertial space.

Sis the impressed force vector acting on the system.

` •is the angular momentum vector of the system.

is a distance from the axis origin to a mass point.

Lagrange's method can also be used to develop the equations of
motion for an aircraft whose motions are measured relative to a non-inertial
axis, i.e., base vectors SO = j s=)J ,(t),and AB 3) . The only
additional cpndition to be applied to the analysis is an appropriate def-
inition of (,h):

time rate of time rate of time rate of
change relative change :elative change of base vectors

to inertial axis to non-inertial axis

Consider the case of the elastic aircraft, shown in Figure 2.1,
which is experiencing an acceleration through a quiescent atmosphere
at a translational velocity . and a rotational rate.JL~ • The air-
craft should be visualized in terms of a system of "lumped masses" inter-
connected by "springs" and excited by external aerodynamic and gravita-
tional forces.

It is important to realize that the body axis selection for the
elastic aircraft case is very difficult:

* The geometric axis attached to selected masses points in the initial
condition is non-orthogonal at subseauent time, i.e., the body
reference axis system (BS, WBL, WI) b,.comes non-orthogonal for the
free elastic aircraft.

9 The principle axis system develops translational and rotational ac-
celerations related to the center of mass motion plus the elastic
motion.

is
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* The attached axis system, attached to a single mass such as an
accelerometer and tangent to the jig body axis at the initial
condition, experiences acceleration proportional to the center of
mass motion plus the motion of the individual mass relative to the
center of mass motion.

There are several constraints to the choice of the body axis system:

* The aerodynamic data is usually available only in the jig or cruise
geometric axis system, the stability axis system, or the wind axis

a •system.

oThe mass distribution and geometry are specified in the jig or
cruise geometric axis system.

*The structural proper.ties, stiffness and flexibility, are specified
in a structural global axis system that may be coincident with
the inertial axis or the non-inertial axis at the initial conditions.

It is assumed for purposes of this derivation of the equations of motion
of the elastic aircraft, that the mass distribution, aircraft geometry,
and structural data are specified in the cruise body axis system. Then,
the methods of reference 21 or 23 may be applied to transform these data
to a representation of the aircraft at any trimmed, off-cruise, M-q flight

- point. It is also assumed that subsequent structural distortions from
the trimmed aircraft flight point are small, i.e., changes in the geometry
of the planform and the effects of material plasticity can be neglected.
The primary structural distortions considered are those contributing sig-
nificant forces during some perturbation motion about the mean motion speci-
fied by the initial conditions of the dynamics problem.

A more microscopic view of Figure 2.1 is useful in defining the terms
used in the derivation of the elastic airplane equations of motion. One
such view is presented in Figure 2.2. Here the inertial axis, the body
axis, and several of the lumped masses, including the ith mass are shown.
Each of these lumped masses represents a portion of the total airplane mass,
i.e., fuel, payload, structure, instruments, etc. Each of the masses has
gravitational and aerodynamic forces acting upon it. Each of the masses
has accelerations inposed upon it proportional to the net system accelera-
tions (body axis accelerations).

The notation used in Figure 2.2 is defined:

are non-inertial axis attached to the elastic aircraft;
base vectors 'S) B and .

)(t~q are the inertial axis either attached to the flat earth
or translating rectilinearly at a uniform velocity; base
vectors2 , ' ,A

16
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FO)is a vector distance from the inertial axis origin to the
body axis origin.

*A ( is a vector distance from the body axis origin to the
ith mass.

r4)is the vector distance from the inertial axis origin to

the ith mass.

l[tis the vector force on the ith mass.

The Lagrangian for any mass in this system is:
W

where Mý is the mass of the ith "lumped mass".
K..is the free-free structural stiffness influence coefficient at

the lth mass due to a displacement at the jth mass in one of three
possible directions.

Applying the definition of ; , shown in Figure 2.2,

Zud

Equation (2.5) contains 6+3 N motion variables.

Substitution of LZ from equation (2.5) into equation (2.1), and
letting ,• , results in the equations of motion for the 3 translational
degrees of freedom of the ith mass relative to the non-inertial axis:

4. ,,,.2 6a
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For axis translation, .=L 5

jj

N -

L~

+ - )( O + ZY (2.6b)

The equations describing the axis rotation are more difficult to develop
since the axis origin is not attached to the center of mass. This necessitates
a careful consideration of the mathematical operation employed in equation
(2.2). Consider first the angular momentum for the mass system in Figures 2.1
and 2.2 for observers stationed in both the inertial axis system with originO1 ,
and in the non-inertial axis system with origin :.

N

-)c

Following the work of Goodman and Warner( 2 4 ) , the relationship of ýzto

can be developed:

where • is the distance from Op to the center of mass.

M is the total mass, i.e., M =7, m;

is the velocity of the center of mass relative to the inertial
axis.

Differentitate In , i.e.,

where Mz are the moments about OT.

N? are the moments about Cp

O is the acceleration of the center of mass relative to the
inertial axis.
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Thus,oI, l/J+ € unle~s the non-inertial axis is attached to the
center of mass, -_ or or s l.l to Analtraefr o is that presented by Milne( 1 5 ) ee

A-z6

A convenient redefinition of this expression forrv separates the aro-
dynamic and thrust moments A , from the gravitational moments, M,o.i .e ., M _ •_

or, alternatively,

where VC. k VA1.'r /Sk

for an axis system not attached to the
center of mass.

- 0 for the axis attached to the center of mass.

In terms of the notation in this paper, 1 and M are expressed as:

AM; S£ It4 J~LCOY
-• -a.

Pi

Kt

*14
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The reader should observe, at this point, that a simplification of
equation (2.6cj is possible by noting that the terms grM Y. Vol

* and the term V VA; SF/$t will cancel one another. However, this
cancellation will Ai't be effected to measure the importance of the attach-

ment of the axis orgin to the center of mass to occur later in this paper
* in section 2.2.2.

2.2.1 Large disturbance equations of motion

Equations (2.6) are the equations describing the general motion of
elastic flight vehicle-s in the quiescent atmosphere. In practice, these
Pruations are modified and simplified to facilitate their use in the
analysis and synthesis of flight control systems. The description of the
large disturbance motions, to be defined the "large disturbance equations",
is required for two purposes in these analysis. They are used (1) to develop
the linear equations describing the small disturbance motions and (2) to
evaluate in detail the control systems designed using the more simple and
less accurate linear equations.

To develop the large disturbance equations, it is assumed that all
the time dependent motion variables can be separated into an initial value,
plus a perturbation variable. In the case of equations (2.6a), (2.6b), and
(2.6c), this separation has the form:

(Ut* 4. (UU,2.+8 L4 L+ + (Ui+ L.3)~ (2.7a)

AA +

A substitution of the perturbation expressions defined in equations
(2.7), into the motions, related by equations (2.6), results in equations
(2.8). In equations (2.8) vector products, i.e.,1K4, have been converted
to an equivalent indicial notation form, i.e., 4e.

Axis Translation:

where i ranges from I to N; where J, k, 1, m, n range
from 1 to 3. (2.8a)

21.
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The term ej is the vector permutation symbol commonly employed in

the indicial notation to represent vector cross products.

Axis Rotation:
(IAL.+M i÷ A : (Rpi 4 )+ (MI;' M ) 2.)

where

4, U A i +Pk) e lm +...

+- M; ej 9  ( P,4i p ki(~ 4
~ 2piA e~~ tA+PA;) eCr,~ (P,11W.-I A )

G(M L 4M~

where 5%is the Kronecker delta~ funcztion, where i ranges from 
1 to N;

where J, k, 1, m, n ran~ges over 1, 2, and 3.
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iP
: Elastic Deformation at ith Mass:

(2.8c)

where • kLjtk is the force on the ith mass in the jth direction due

to a detormation at the kth mass in the ith direction, and where no
summation on i is intended; where J, k, 1, m, n range over 1, 2, and
3 unless otherwise noted.

In equations (2.8), the initial values of the parameters are F. J.: Mi.Ma
Ma . , F.,F.?, V , and SL ; the perturbation values of the parameters

are "- ai , , ,, and w ..

Equations (2.8) contain both initial condition motions and perturbation
motions from the initial conditions. It is of advantage in later analysis
to now separate the two motions. This can be accomplished by setting all
the perturbation parameters to zero in equations (2.8):

Axis Translation:

Axis Rotation:

M (2. 9b)

where

--i
+. P
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•, •M 4 = mej• ?, +n AQV• . el 4,• Aci

:+
Elastic Deformation at ith Mass:

~4-L
. .t5 -B;, •(2.9c)

A substractior of the initial conditions in equations (2.9) from the combined
initial conditions and perturbation motions in equations (2.8) results in
the large disturbance equations of motion, equations (2.10):

Axis Translation:

+~ ez W .,-M n 21a

Axis Rotation:

M~i +(2.10b)
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Elastic Deformation at ith Mass;

e~j I (34AL Ply~ ±J-t P;)e~k (Pk-1(O) efft,,(3). N;(mp,
~1

The large disturbance perturbation equations contain reference to both the
Sinitial conditions and to the perturbation motions. Usually, these initial

conditions are specified or determined from equations (2.9) in each problem
of interest to the flight control engineer.

2.2.2 Small distrubance equations of motion

In many cases of practical importance, the large disturbance equations
are simplified to a small disturbance form. This simplification accom-
polished by assuming that all perturbation variables are of order E ,0(*-),
where F, is a very small number. Then, products of the perturbation
variables are of even smaller order, i.e., O(E) multiplied by 0 ( V- ) is
0( c), where O( -) « 0 (s). If all terms of 0( E) or smaller
are eliminated, equations (2.10) are linearized, and the small disturbance
equations result:

Axis Translation:

SM 07(Jk ItIl(kVI 4~Aj + e~g a ~

+ ' b e (R pi~ 4 Vh; 4e r i k 1-,' ~m.b +cB)
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Axis Rotation:

(2.11ib)

where

fh; ejk ;e

rn- ? eS~ 4 I ( IXV'pPOAA)-F E; 4

M LIr; ej.q (v;LO+

Elastic Deformation at ith Mass: a

-y~nIrN +e bQ(PAtrL+ W4.)70 j 1, ()Aj+&3

(2.l11c)
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The most common flight control problem analyzed using the small disturbance
equations is that of wings level, constant velocity, rectilinear flight,
parallel to :he surface of the "flat" earth. As a consequence, the remainder
of this paper will consider that analysis problem. For these initial
conditions, equations (2.11) are greatly simplified:

S •"Axis Translation:

S : Axis Rotation:

(2.12b)

Pi+ A Pit;jP~

- r ktV Vk + Vke.XM W Pr' M

Elastic Deformation at ith Mass:

~ (2.12c)
Equations (2.12) are expanded in equations (2.13) using the followiug
definitions:

V =.

~U1 + ~tBA _348~~ - u.e 4 bC WO4

A~ A

P~~~~~ A ,4 .4

S-4 A 
k

A.5g
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where u, v, w, p, q, r; Uo, Vo, Wo, P, 0, R are the standard notation, suchas defined in reference 10.

Rigid Body Translation:

Mb'iavJ..iA~t4 ct + e -c

- Mb4+ru, -PW.) 4• , +

I Li3 I~ p~C

(2.13a)

Rigid Body Rotation

Mal= W. h LVoC,- 6.\3= 3 - (Xs2 --.

+ N(.C, -vUCL) - p(rN ,- ,)

N

T144 uMt ".*

M At 86 i-,4 8 -I + ti 3l týV.15X ,: ~

+ (Uo •e, -W., e,• -e (.wbcL-Vo4, (2.13b)

Elastic Deformation at ith Mass:

W- "" P(2.1&4M

where the product ;,k p. is the stiffness force on the ith mass in
the 1, direction (subscript 1) due to the vector displacement, f/A
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of the kth mass. Similarly for and E3AQ

The gravitational forces acting on the system appear explicitly in equa-
tions (2.13a) and (2.13c) and remain implicitly represented in equations
(2.13c). Following the convention of most aeroelastic analysts, the terms
"axis translation" and "axis rotation" are replaced by "rigid body transla-
tion" and "rigid body rotation". This less precise terminology has become
standard even though the term "rigid" is certainly misleading in elastic
aircraft analysis. Its use illustrates a commonly encountered problem -

"often one aeroelastic engineering dispipline, e.g., flutter, loads, sta-
bility and coatrol, etc., generates a unique terminology that appears in-
consistent or non-precise to other engineering disciplines.

Up to this point in the development, the body fixed axis system has
been "fixed" arbitrarily to the body, since the selection of an axis sys-
tem often depends upon the problem of interest. However, in elastic air-
craft analysis, an axis that facilitates the solution of equations (2.13)
must be selected. Consider the axis attached to the center of mass of
the flight vehicle. In this ease the terms Cl. C2 , C3 and all terms in

the first box of equations (2.13b) are zero. If in addition, the axis
that is attached to the center of mass is also the "mean axis" (15),
those terms in the boxes in equations (2.13) are eliminated. The result
is an immense simplification of eouations (2.13): the only remaining
coupling between the axis translation and retation equations and the elastic
deformation equations occurs in the aerodynamic terms , f , and

M&

This paper will select the mean axis for subsequent analysis. Since
the initial orientation of the mean axis is a user specified, this paper
will select a mean axis orientation such that e9 is zero and such that
the products of inertia I and I are zero. Equations (2.13) become

xy zy

YK

M Iv Pj\,. - V (2.14a)
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i- 'Mm; • A(2.14b)

k~ 4F 'VO 4-~

(2.14c)

The kinematic relationships between the inertial axis and mean axis
provides a relationship between the Euler angles e , , and f and
the rotation rates p, q, and r:

Sq p p+rAt1 = r

The combination of the kinematic relationships and the equations of the
dynamics can be written in a compact matrix notation as in equations (2.15):

j , ,o(2.15a)

., = (2.15b)

(2. 15c)
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f'.A-j, 4o,-4- A,&? .A... A,... (2.15d)

where A and A contain those aerodynamic force derivatives propor-
tional to the rigid body translation and rotation.

A3 , A4 , A5 contain those aerodynamic force derivatives propor-
tional to the elastic deformations.

Combining equations (2.15a) and (2.15b) and summarizing equation (2.15c):

M (4I-iM 1 u+ M, aHzr4) (2.16a)

where M

Equations (2.16) and (2.15d) are the equations of motion for a con-
trols fixed elastic aircraft. They describe the linear, small perturbation
motion about a reference state (initial condition) of wings level, recti-
linear flight. A comparison of equations (2.16) to equations (6.118) and
(6.146) of reference 12 indicates an exact coriespondence. Thus the
Newtonian approach of reference 12 and the Lagrangian approach of this
Memo have resulted in the same equations of motion. It should be noted
that this mathematical representation of the aerodynamic forces due to
rigid body and elastic motions, i.e., A1  , A2  , A3  , A4  , and

A , is unique to reference 12 and this paper. The alternative method
opten found in the literature is a combination of A with A2 and of

A3 and A4 with A5 . This combination permits Lhe use of the many

unsteady aerodynamic theoretical methods currently found in the literature.
The disadvantage of the combination is its implicit dependence upon the

frequency (or time) variable. This implicit dependence requires a costly
iterative frequency solution for the aerodynamic forces due to the rigid
body motions and the elastic motions •. prior to or simultaneously
with the determination of the eigenvalues of te equations of motion of the
elastic aircraft. An iterative frequency solution is not required for
the aerodynamic forces due to the --VP and 4 described in this paper.
However, this computational savings currently limits the validity of the
solutions of this paper and reference 12 to thi "low frequency" eigen-
values. The upper frequency boundary (Figure 2.3) of the validity of

the "low frequency" approximation has not been determined, but from the
practical viewpoint, it is probably sufficient to do most current integrated
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control system designs.

k ~~Ueveft •P• '

8OLou .> F keq,*,y

Figure 2.3 Comparison of Low Frequency Approximation to Exact, Unsteady

Aerodynamic Theory

-•.2.3 Controls-Free, Elastic Aircraft Equations of Motion - EXACT
Formulation

A controls-free, elastic aircraft analysis proble~m is characterized
by active aerodynamic control surface motion in tesponse to pilot or aug-
mentation system corimands. Two common reasons for these necessary corn-

mands are atmospheric gusts and atmospheric turbulence. The equations
for the controls-free analysis are not as determinable as equations
(2.16) and (2.15d) for the controls-fixed analysis. The reason for this

S" is the dependence of the turbulence and gust aircraft responses to the

;,.. geometry and the flight Mach number of the aircraft. This difficulty
!• can be overcome by assuming a general form for the additional terms to

• be added to equations (2.15d). The net results, equations (2.18), or (2.19),
are termed the EXACT fcrmulation.

2.3.1 Structural damping

In the case to be developed in this section. it will be assumed that
structural damping is viscous in nature and proportional to elastic dis-

placement rate, •p. The damping force is represented as p
wjthere • is a damping matrix and, in general, is a dense array. It

2should be noted thEa the "usual assumption" that D is proportional to

"mena or i "has nor been made, thus, the effect of these "usual assump-

tion" can then be identified in the development of the special formulations

S~34
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in Section 3.0. In the event that • is proportional to MJ or
the following identies are valid:

OT = (2.17a)

0'r (2.17c)

2.3.2 Atmospheric gusts and turbulence

The representation of the atmospheric gust or the atmospheric turbu-
lence often depends upon the configuration being analyzed. Commercial and
military aircraft are designed using different gust and turbulence mathe-
matical models. A given military aircraft may be designed to satisfy
several gust and turbulence mathematical models, depending upon the extent
of its flight profile. It will be assumed that both the gust and turbu-
lence can be represented as 3 components of force on each ot the N masses.
Also, it will be assumed that gust forces f and turbulence forces

o have the same element ordering as aerolynamic forces f . The
total moments and forces applied to the rigid body are then:

IM

33 M.tJ (2.17d)

The general form of and allows several different gust forms,
i.e., ramps, steps, l-dcos, sin, etc. and several different turbulence forms,
i.e., 1, 2, or 3 component Von Karman or Dryden power spectral density
representations. It is only required that the spatially defined gust and
turbulence be transformed to the body fixed mean axis prior to inclusion
into equations (2.15d) as either ý or t . Typical transformation
considerations may be found in reference (25).
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2.3.3 Active aerodynamic control surfaces I
The forces due to specified number of active aerodynamic control

surfaces, c in number, can also be defined in a general sense. The three
components of control surface induced forces nn each of the N masses is
defined to be P . Again, the elements of • are arranged in the
same order as-those in f . It will be assumed that the elements in

4P. are proportional to S, . , and ". by an equation to be
developed for each specialized application, i.e.,

Inserting the general representation of structural damping, atmos-
pheric gust and turbulence, and active aerodynamic control surfaces, re-
sults in equations (2.18):

Ii

+ + (2. 18a)

where A{ . , A -V -t A4 t -FAs (2.18c)

Alternatively:

(2.19a)

where

A~p, z~~4- 3 4~ A4  A, (2.19b)
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Equations (2.19) are defined to be an EXACT formulation of the equations
of motion of a controls-free, elastic aircraft. Inspection of these equa-
tions indicates their form to be linear ordinary differential equations
requiring a simultaneous solutions for the 3N+6 unknowns "U-p and Ap
subject to the 6 constraints imposed by mean axis attached to the center
of mass of the aircraft.

It is particularly important to note that the solution of equations
(2.19) will result in both complex number eigenvalues and eigenvectors:

0 The real and imaginary portions of the eigenvalues are a measure
of the stability, circular frequency, and phase difference of the
eigenvectors.

eThe real and imaginary portions of the eigenvectors reflect the
spatial orientation of the masses associated with an eigenvalue,
i.e., the masses of the ith mode shapes do not have precisely 0*
or 1800 phase difference in position when the ith eigenvector is
complex (reference 26 and 27).

It will be shown in the next section that this result from equations (2.19)
is different than that currently calculated by the "flutter" and "dynamic
load" engineering disciplines. If the flight control engineer chooses the
typical "flutter" equations of motion in which the real number mode shapes
are used, Lie phase and gain relationships cf any control system that is
synthesized may be in error. The magnitude of this error depends upon
the relative magnitude of the aerodynamic terms and structural damping
terms due to the elastic motion.

3I
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3.0 APPROXIMATE FORMULATIONS

The solution of the EXACT formulation requires a large digital com-
puter. A key element in the computerized solution is the routine that
determines the complex number eigenvalues and eigenvectors. Presently,
these routines can calculate a "small number" of complex number eigen-
values and eigenvectors with a high degree of accuracy. As the number
of complex number eigenvalues increases, the accuracy of the routines
deteriorates due to the limited number of significant digits that the
computer can retain. In the case of a solution to the EXACT formulation,
even those calculations using double precision will eventually suffer,
since a typical value of an N is 300 or approximately 900 eigenvalues.
Consequently, an accurate solution of the EXACT formulation of the equa-
tions of motion is unrealizable for all but simplified analysis problems.

In this section, five approximations to the EXACT formulation of
the equations of motion for the controls-free aircraft are constructed
to permit a cheaper and faster determination of the unknown motions.
These approximations are developed by reducing the number of unknowns and
equations through the use of assumptions that may be valid only for a
specific elastic airplane problem. In a mathematical sense, there is no
single set of these approximate equations that are valid for all aircraft
or a single aircraft at all flight conditions. In an engineering sense,
one or more approximate sets of equations may be valid. In eazh of the
five formulations, a matrix equation similar to the EXACT formulation,
equation (2.19), will be developed as the final result.

The reduction in the number of the equations and unknowns often re-
sults in equations of motion that are from 10 to 50 in number. This order
of reduction, e.g., from 100's to 10's in number is sufficient to over-
come the numerical difficulty in the digital computer routines used to
calculate the complex number eigenvalues and eigenvectors. If the reduc-
tion in equation number and complexity is large and excess central memory
storage space becomes available, the nonlinear aerodynamic and structural
data may be incorporated into the analysis. These nonlinear terms are
not considered explicitly in equations (2.19), but may be easily included(12).

There are two means to effect the simplification of the EXACT forma-
lation:

1. The eigenvalue solution of the EXACT formulation equation can be
truncated at some selected frequency. The effects of the neglected higher
frequency eigenvalues must then be "filtered" from the integrated control
system.

2. The EXACT formulation equations can be simpiified to eliminate
the complexfty by reducing the number of equations and unknowns, £2L to
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their solution.

There is no engineering experience at the present time that would indicate
which of the two simplifications is the more appropriate for elastic ve-
hicles at all M-q flight conditions.

The second simplification is that most commonly employed and reported
in the literature. When this simplification is selected, the flight con-
trol engineer must decide upon a static or dynamic aeroelastic formulation
appropriate to his elastic aircraft. This decision requires a certain
amount of engineering insight based upon experimentation and previous ex-
perience. It is the second simplification that will be discussed for the
remainder of this paper; the first simplification is currently being
investigated by the AFFDL/FGC.

The reduced set of equations to be considered in this Section are:

* QUASI STATIC

0 MODAL SUBSTITUTION

0 RESIDUAL STIFFNESS

* RESIDUAL FLEXIBILITY

* MODAL TRUNCATION

3.1 QUASI STATIC Formulation

The QUASI STATIC formulation is the classical method used by stability
and control and flight control engineers prior to the advent of highly
flexible aircraft. This formulation is the most rapid and the cheapest
to solve. Due to the s-mall number of equations, it is ideally suited to
a nonlinear aerodynamics analysis based upon experimentally measured data.
An illustration of this approach is found in reference 12.

The derivation of the QUASI STATIC equations begin with equations
(2.19):

FM0 1n 0 0, 01 ) +MM2  01

(2.19a)
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where

(2.19b)

These equations are simplified with assumptions Al and A2

Al the aerodynamic forces proportional to - and are zero
i.e., Ap s =0.

A2 the structural inertial and damping forces are zero, i.e.,

Equation (2.19) becomes:

r +L L:ir

Alternatively:

A. r:11- + r"I ýý
(3.la)

where now
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Substitute from equation (3.1c) into equation (3.1b), collect the
common terms, and then determine nr

i I 'c 4 + (3.2)

Substitute of equation (3.2) into equation (3.1c) and group common
terms:

S(A , 4 <-AA -'(A -m-..a,))N + (Az+As(K-A,)-(A,-r'.

" ~(3.3)

The QUASI STATIC formulation is presented in equations (3.4):

In 0 to (3.4a)

A +.A +
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All explicit reference to elastic motion cp has been eliminated
in equation (3.4). The factor(t1A+k(R-A.1"1) is a "quasi static" aero-
elastic correction factor applied to the rigid airplane forces and moments.
The factors-yi• ,-M;JM, , and -rAaM 2 are "inertial relief" corrections.

An alternate formulation exists in the literature. -It is based upon
the availability of a flexibility matrix for the cantilevered structure
and the construction of the "free-free" flexibility matrix • . This
formulation is repeated below from reference 12. Since the formulation
in reference 12 describes motion of a controls-fixed elastic aircraft in
quiescent air, editorial prerogative has been assumed and the terms

+ have been added to the equations.

I I
~ 2~J+ [M ]K+LM1Y4

where IY) A 1 M

(1 is the flexibility matrix for the cantilevered structure.

An individual applying the QUASI STATIC formulation has in effect

assumed that the elastic deformation occurs instantaneously and in phase
with the axis system motions. This representation is usually valid for I
the design of handling quality and reduced static stability augmentation
systems of elastic aircraft at very low frequencies, or for elastic air-
craft having a large frequency separation of its rigid body and elastic
deformation motions. The formulation is not generally valid for the
design of the other CCV-type control systems.

The QUASI STATIC formulation has as its advantages:

1. The solution of only 6 equations, permitting many M-q flight
conditions to be rapidly analyzed.

2. The inclusion of nonlinear aerodyrnamic effects to flight controls
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analyses using aeroelasttc correction factors, e.g., CLYM -Le I
r: - t"s. I ti- s e c

3. The convenient implementation on limited size analog or digital
flight simulators.

3.2 MODAL SUBSTITUTION

The MODAL SUBSTITUTION formulation is classified as "dynamic aero-
elastic",since the elastic motion is not assumed to be in phase with the
rigid budy motions. It is assumed that:

A3 structural damping forces are negligible, i.e., very sriall
compared to the structural stiffness and structural inertial
"forces.

A4 aerodynamic forces due to the elastic deformation are negligible,
i.e., small compared to the structural stiffness and structural
inertial forces.

Assumptions A3 and A4 permit a coordinate transformation using
the invacuum, orthogonal modes of vibration. This substitution results

* in the simplification of the complex number eigenvector solutions of
equations (2.19) to real number eigenvectors. The procedure for accom-
plishing this transformation is!

1. Recall equations (2.18b):

-t- (2.18b)

2. Represent C[p as al ensemble of invacuum, orthogonal modes
of vibration, i.e., p = A. , where *o= =T; I(o= 0.

3. Post multiply equations (2.18b) by - .

4. Apply assumptions A3 and A4

The result is presented in equations (3.5):

J, OT ,,, . = oo- , I.

3(3.5)
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where TVm (3.6a)

(3.6b)

5. Determine the eigenvalues and eigenvectors satisfying equation

"(3.5) such that (3.6a) and (3.6b) are valid, i.e., find the

eigenvalues of the determiinate j [I 4VY-'A?2 = 0. This

eigenvalue problem is well documented in reference 28.

Of the ?; , in the general 6D case, 3N-6 in number are real non-zero

numbers; those 7; that are real are used to determine the value of 0. Six

Sof the A-, -ire zero diue to the use of the stiffness matrix R for the "free-

free" structure. Physically, the zero eigenvalues mean that the elastic

displacements are known within an arbitrary 3 rotations and 3 translations

of the elastic body ensemble. The amplitudes of the translations and

rotations are zero by definiticin of th.2 mean axis. The degrees of freedom

may thus be removed bv combining equation (3.5) with equations (2.18b) and

(2.18c):

M,+ + 
(3.7a)

"A 4- UL + + T,(3.7b)

i=A,- -i- M : .- A4 t&C + (3.7c)

Note that this coordinate transformation of A? to OLL has reduced the

number of equations and unknowns.

Equations (3.7) can be rewritten into the matrix format similar to

equations (2.19):

0 0 V1 M 14 I'L 0 MMII.3V -i

LO 0 0 0 (Yý (3.8a)

where k(3.8b)
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The equations (3.8) are termed the MODAL SUBSTITUTION formulation.
This formulation has reduced the complex.ity of the problem, i.e., complex
number eigenvectors in equation (2.19) are reduced to prescribed real
number eigenvectors in (3.8). However, this reduction has not eliminated
the problem of determining a large number of complex eigenvalues and
complex number eigenvector magnitudes. The "inaccurate"'complex number
eigenvalue routines required for the EXACT formulation, must still be used.

3.3 RESIDUAL STIFFNESS Formulation

The RESIDUAL STIFFNESS formulation reduces the number of equations
and unknowns that are associated with the elastic motion in the MODAL
SUBSTITUTION formulation. This reduction may be limited to only one mode
shape or to most of the 3N-6 mode shapes. The reduction is accomplished
by the engineer:

1. Noting that a large separation in the frequencies of the mode
shapes has occurred.

2. Deciding that the problem need include only those eigenvalues
that are less than some selected frequency.

The RESIDUAL STIFFNESS formulation then represents dynamically all
the modes retained; it "statically" represents all the modes deleted.

First, separate Ap into retained and deleted modes:

where •,LA, are modes to be retained.

(k(L are modes to be deleted.

The Cp of equations (3.9) is substituted into equation (3.8):

S+ 0 0 (3.0a)

I " C)
(3.10a)

where Mn, O,¢Tk ,

A A. +A3
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I
In order to reduce equations (3.10) to the RESIDUAL STIFFNESS

formulation, the following assumptions are required:

A5 the aerodynamic forces due to deleted modal velocity and accelera-
tion are zero, i.e., ALtC4 As = 0.

A6 the structural damping and inertial forces due to deleted moial
deformation EA2 are zero, i.e., 0,T = C) qD6= 0, [44 = 0.

A7 the structural damping of the retained modes on the deleted modes
is zero, i.e., qZD•, 0.

Applying the assumptions to equations (3.10) reduces them to the
form of equations (3.11):

rII

L0 TY, Dt JN + L U
(3.11a)

.Tý (3. lb)

+ + (3.110)

Equation (3.11b) is solved for LAa and the result is substituted into
equations (3.11c):

Ar*AJ-4 + A5 i, 4A4~, 0 A5 cs,,
~ (3.12a)

Equation (3.12a) has a common factor, P , appearing on both the right
and the left side of the equality. A grouping of this factor to the left
side of the equality and removing the multiplication factor by inversion
reduces equation (3.12a) to the equation (3.12b)
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Summarizing equation (3.12b) and equation (3.11a):

C) O MMXO0ýJj

jTo 0 jh )oAI I\o 1) 0L
(3.13a)

T[- A,•'4 5 -' O] AL-r A,4, U, 4A4

Equations (3.13) are the RESIDUAL STIFFNESS formulation. They are

6 + r in number, where r is the number of retained modes, , . A
substantial simplification of the MODAL SUBSTITUTION formulation (equations
(3.8)) has been accomplished. The 3N number of equations and unknowns
has been reduced to 6+r number of equations and unknowns. The cost of
the simplification is that the elastic airplane must satisfy assumptions

A3 and A4 as in the 1ODAL SUBSTITUTION, and in addition, must satisfy

assumptions AS, A6 , and A7 . The advantage of this technique is

that r can be selected such that the 6+r equations are less than 50, thus,
the "inaccuracy" of the complex number eigenvalue computer routine can
be minimized. The disadvantage of the technique is that all the mrl'e
shapes, , and qN\, must be calculated.

3.4 RESIDUAL FLEXIBILITY Formulation

The RESIDUAL FLEXIBILITY formulation eliminates the necessity to
calculate 4 required in equation (3.13) of the RESIDUAL STIFFNESS
formulation. The elimination is accomplished by redeveloping equations
(2.18a) using the "free-free" flexibility matrix. An excelient descrip-
tion of this formulation is found in references 12 and 16. The expres-
sion equivalent to equation (2.18a) is equation (6.129) of reference 12:,•[-A,; P;; 0 P,,-• )_a- +

(6.129,

Ref. 12)
where C is the "free-free" flexibility matrix and
C is the flexibility matrix for the aircraft structure restrained (at

the c.g.) against rigid body translation and rotation. The terms abv#i£
have been added using editorial prerogative.

The removal of 4 LJ from equation (3.12a) is accomplished in
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° i

5 computational steps:

1. Recall equation (2.18a); apply A3 and A4 and substitute

£0-- •U,-+ •UL from equation (3.9) O

Lt 47 Yh

2. Premultiply equation (3.14) by lot, (]

3. Equate equation (2.36), reference 15 to equation (3.15), i.e.,

pJeq(3.15) 'jp Ieq(6.129,I
ref. 12)
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Collecting terms that contain

rA

Defining Z4d _q5AAT'cAT

-- Cf 1 (3.16)

4. Substitute Op = $,L45, $tL. from equations (3.9) into equa-
tion (3.16) and recall A5 , A6 , A7

SV I ° °"

i. = l-I _ ° oD¢.._

*iZ..

-'cZ• (14-,t•,1v -t4 ttr4) (3.17)

*D I
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Equation (3.17) becomes:

5. Recall equation (3.12a):

4T

+- (3.12a)

Substitute equation (3.18) into equation (3.12a), collect the terms
on left side of equation, and remove the common term by inversion:

= ; -Al] ( A,-v- t.• +Ad-- 4A• , +A4,L4, +Af,$ 1 ,

r% ~ K4- re+ [06 i(3.19b)
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Equations (3.19) are the RESIDUAL FLEXIBILITY equations that describe
the motion of a controls-free elastic airplane. As in the RESIDUAL STIFF-
NESS formulation, the number of unknowns is 6+r, where r is the number of
retained modes •, . This formulation does not depend upon . kda
as did the RESIDUAL STIFFNESS formulation, thus, q', need not be calcu-
lated. The penalty for using the RESIDUAL FLEXIBILITY formulations are
the necessities to:

1. Determine C for the aircraft.

2. Calculate more numerous matrix products in i

The relative cost advantage of the RESIDUAL STIFFNESS and RESIDUAL
FLEXIBILITY formulations is unknown at this time and is being investigated
further.

3.5 MODAL TRUNCATION Formulation

The most common formulation used to solve the controls-free, elastic
aircraft, dynamics problem is MODAL TRUNCATION. This formulation is
currently applied to the B-52 CCV (reference UI)and the B-1 (reference 29)
aeroelastic analyses. This formulation reduces the computational steps
required in the previous formulations by assuming A8 , and A9 below,
in addition to A3 thru A7 assumed previously:

A8 the structural spring forces due to UL are zero, i.e., htI= 0.

A9 the aerodynamic forces due to U1. are zero, i.e., A 3 q~ttA% 0.

The application of assumptions A3 through A9 to equations (2.19)
reduces them to the following from:

o o

(3.20a)
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Inspection of these equations indicates all reference to 4 has
been deleted. This reduces the number of equations and unknowns to
6 + r , where r is the number of retained modes .

This formulation has the advantage of a simplified aerodynamic
representation. In addition, the required computer size and the computer
central processing time are smaller than either residual formulation,
thus allowing more analysis for the dollar.

The disadvantage of the formulation is that it has a narrower range

of applicability than any of the other dynamic aeroelastic formulations.
Thus, its use in the design of integrated flight control systems should I
be verified with quantitative and qualitative analyses that test the as-
sumptions A3 through A9 .

J

52



4.0 RESULTS

The primary results of this study are the six formulations of the
equations that describe the small disturbance motions. These six formula-
tions are summarized in Table 4.1. Here the similarity of the formula-
tions is readily apparent as well as the reduction in the number of
equations that occurs with each of the successive approximations. As
shown in the table, the EXACT formulation, equations (2.19) are 3N+6 in
number. The MODAL SUBSTITUTION formulation, equations (3.8), reduces the
number of equations to 3N in number, while the RESIDUAL STIFFNESS, equa-
tions (3.13), RESIDUAL FLEXIBILITY, equations (3.19), and MODAL TRINCA-
TION, equations (3.20), formulations each consist of only 6+r equations
where r is selected by the analyst. The value of r usually ranges from
2 to 30. The simplest formulation of the equations of motion is the QUASI
STATIC, equations (3.4). It consists of only 6 equations and does not
explicitly represent the elastic deformations.

The development costs of aircraft systems are often the major influ-
ence on the selection of the formulation of the equations of motion and,
thus, costs must be weighed in any analysis as an additional deciding
factor. In the event that two or more of the six formulations for the
small distrubance motions are appropriate to a particular flight control
analysis, a cost-effectiveness trade can be constructed similar to that
presented in Table 4.2. As noted in the table, the increase in accuracy
requires an increase in analysis cost due to increasing equaLion complexiZy.
The reasons for this increase in cost and complexity are that both com-
puter program run time and program size increase as the flight control
analysis moves from the QUASI STATIC to the EXACT formulation. The pri-
mary reason for the increase in run time and cost is the necessity to
employ highly accurate, computerized routines to calculate both the real
and complex eigenvalues and eigenvectors of each system of equations.
In addition, the RESIDUAL FLEXIBILITY formulation requires a non-standard
flexibility matrix, the "free-free flexibility matrix", that is not
required in other formulations. This flexibility matrix, related to the
flexibility matrix of the cantilevered aircraft, must be recalculated,
using the equation

each time the center of mass is changed, c , or the inertia of the air-
craft, M and mi, is altered. These two changes are common parametric
studies in most flight control analyses and are particularly important
in those studies that are used to design and analyze the reduced static
stability augmentation systems.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

This paper has related the common formulations of the equations
describing the motions of elastic aircraft. The conclusions of this
study are that:

1. There is no formulation that is appropriate to all flight control
analyses of elastic aircraft. The large disturbance formulation, equations
(2.10), must be carefully specialized for each analysis due to their im-
mense complexity. The small disturbance equations cf motion that are
most appropriate are those named the EXACT formulation, equations (2.19).
However, in the interest of reducing analysis costs, the five approximate
formulations of section 3.0 may also be appropriate. In no case should
the QUASI STATIC, equations (3.4), or the MODAL TRUNCATION, equations (3.20),
approximate formulations be chosen a priori.

2. The selection of an inappropriate formulation ef the equations
of motion can lead to large errors in the design of the flight control
system. The actual numerical error cannot be determined at this time due
to a lack of extensive numerical evaluations of the terms that are neg-
lected to develop each formulation. The numerical evaluation of the
significant terms neglected in each of the formulations should be a high
priority research project. Contemporary aircraft should be used as the
study configurations in this research.

3. The implementation of the equations of motion on flight simulators
restricts the equations to the RESIDUAL STIFFNESS, equations (3.13), the
RESIDUAL FLEXIBILITY, equations (3.19), the MODAL TRUNCATION, equations
(3.20), or the QUASI STATIC, equations (3.4), formulations. This restric-
tion occurs because the number of equations must be small buch that the
storage capacity cf flight simulators (usually less than 40,000 central
memory locations) is not exceeded. Obviously, the QUASI STATIC formula-
tion, consisting of only 6 equations, is the simplest to use. Usually

this formulation does not use all of the central memory of the flight
simulator and, thus, the remainder of the central memory can be used to
represent the nonlinear elements of the control system or the nonlinear
aerodynamic effects of the elastic aircraft. However, the QUASI STATIC
formulation does not represent the dynamics of the elastic structure and,
for these analysis cases, the other three formulations must be applied.

4. The formulations that may most easily include the effects of
nonlinear aerodynamics are the RESIDUAL STIFFNESS, RESIDUAL FLEXIBILITY,
MODAL TRUNCATION, and QUASI STATIC formulations. This is because these
four formulations can be reduced in size until central memory storage space
in the digital or analog computer becomes available for the storage of
the significant noalinear aerodynamic data. The penalty for the reduction
is, of course, a reduction in accuracy.
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